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2 Dipartimento di Fisica, Univ. di Roma Tre, Via della Vasca Navale 84, 00146 Rome, Italy
3 INFN, Sezione di Roma III,Via della Vasca Navale 84, 00146 Rome, Italy
4 INFN, Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati, Italy
5 Dipartimento di Fisica, Univ. di Roma “La Sapienza”, P.le A. Moro 2, 00185 Rome, Italy

Received: 8 March 2005 / Revised version: 15 April 2005 /
Published online: 18 May 2005 – c© Springer-Verlag / Società Italiana di Fisica 2005

Abstract. We present a lattice QCD determination of the chiral quark condensate based on a new method.
We extract the quark condensate from the operator product expansion of the quark propagator at short
euclidean distances, where it represents the leading contribution in the chiral limit. From this study we

obtain 〈q̄q〉MS(2 GeV) = −(265 ± 5 ± 22 MeV)3, in good agreement with determinations of this quantity
based on different approaches. The simulation is performed by using the O(a)-improved Wilson action at
β = 6.45 on a volume 323 × 70 in the quenched approximation.

PACS. 11.15.Ha, 11.30.Rd, 12.38.-t, 12.38.Gc

1 Introduction

An accurate determination of the chiral quark condensate
is a task of prime interest. Its non-vanishing value sig-
nals the spontaneous breaking of chiral symmetry in QCD
and, quantitatively, it is related to the pseudo-Goldstone
bosons mass spectrum.

Due to the purely non-perturbative nature of the quark
condensate, its estimate is rather challenging. Traditional
approaches have been based on QCD sum rules (a review
of these techniques can be found in [1,2]). In the last years,
first principle determinations of the quark condensate have
been provided by lattice QCD calculations, and the accu-
racy of these results is expected to systematically improve
in time. The standard method to extract the quark con-
densate from lattice calculations exploits the well known
GMOR formula [3–6]. Alternative techniques have been
also investigated, based on the ε-expansion of QCD in a
small volume [7–11] and on the study of the Goldstone
pole contribution to the pseudoscalar quark Green func-
tion [12,13].

In this paper, we present an exploratory lattice QCD
determination of the chiral quark condensate based on a
new method. We study the quark propagator in coordi-
nate space and its operator product expansion (OPE) [14]
at short euclidean distances. The OPE is a powerful tech-
nique that systematically includes non-perturbative cor-
rections and parameterizes the non-trivial properties of
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the QCD vacuum in terms of condensates [15]. We ex-
tract the quark condensate 〈ψ̄ψ〉 by evaluating the quark
propagator at short distances on the lattice, and compar-
ing the result with the OPE prediction,

S(x) (1)

∼ CI(x)
/x

(x2)2
+ Cm(x)

m

x2 + Cψ̄ψ(x)〈ψ̄ψ〉 + . . . ,

where the dots represent higher powers of x2 and of the
quark mass m.1 Our final result for the chiral quark
condensate, renormalized in the MS scheme at the scale
µ = 2 GeV, is

〈ψ̄ψ〉MS(2 GeV) = −(265 ± 5 ± 22 MeV)3 , (2)

where the first error is statistical and the second system-
atic. This result is in good agreement with those obtained
from the other methods listed above. It also provides a
remarkable non-perturbative test of the OPE predictions
at short distance in QCD.

The OPE of the quark propagator can be also per-
formed in momentum space, from which a determination
of the quark condensate might be possible as well. When
working on the lattice with Wilson fermions, however, the
leading contribution to the OPE in momentum space is
a constant term induced by discretization effects. Though

1 Throughout this paper we use the notation x =
√
x2.
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vanishing in the continuum limit, this term is dominant at
fixed lattice spacing with respect to the mass and the con-
densate contributions, whose coefficients are suppressed
by 1/p2 and 1/p4 respectively [16]. In coordinate space
this major obstacle is bypassed, since the Fourier trans-
form of the unphysical term is a discretized delta function,
whose effect is negligible at distances larger than few lat-
tice spacings.

Another advantage of the approach studied in this pa-
per is that it greatly simplifies the renormalization proce-
dure. Specifically, once the quark propagator on the LHS
of (1) is renormalized, all contributions appearing on the
RHS turn out to be expressed in terms of renormalized
quantities. In particular, the determination of the chiral
quark condensate in this approach does not require the
evaluation of the corresponding renormalization constant.

The applicability of the OPE to correlation functions
evaluated on the lattice at fixed value of the lattice spacing
a relies on the existence of a short distance region where
the conditions

a <∼ x <∼ 1/ΛQCD (3)

are both satisfied. The upper bound in (3) guarantees that
the Wilson coefficients entering the OPE at the typical
scale µ = 1/x can be evaluated in perturbation theory.
The lower bound must be satisfied in order to keep under
control discretization effects. In the present study, though
we use an O(a)-improved action and the value of the in-
verse lattice spacing is as large as a−1 � 4 GeV, we find
that in the region x <∼ 1/ΛQCD discretization effects in
the quark propagator are not negligible. These effects are
in fact responsible for most of the systematic uncertainty
quoted in (2). In order to reduce their contribution, we
have followed a procedure similar to the one applied in
[17]: we have corrected the lattice results for the quark
propagator by the lattice artifacts computed in the free
theory, thus reducing their size from O(a2) to O(αs a

2). A
better control of discretization effects could be obtained
by performing the calculation at different values of the
lattice spacing and eventually extrapolating to the contin-
uum limit. This analysis goes beyond the purpose of the
present exploratory study. It is also worth to mention that
the method considered in this paper can be only imple-
mented at sufficiently small values of the lattice spacing,
since the size of the region selected by (3) decreases when
going to coarser lattices. A study performed in [17], for in-
stance, has shown that with a lattice spacing a−1 � 2 GeV
this region includes only few lattice points, thus rendering
this approach practically unapplicable.

We now summarize the procedure followed in this
study and present the plan of the paper.

In Sect. 2, we derive the OPE of the quark propagator
in coordinate space, by including QCD corrections up to
the next-to-leading order (NLO).

Details of the lattice simulation are presented in
Sect. 3, where the tree-level correction of lattice artifacts
is also discussed.

In Sect. 4 we compute the renormalization constant
of the quark propagator non-perturbatively in the X-
space scheme. The X-space method has been proposed

in [18], and applied in [17] to compute the renormaliza-
tion constants of bilinear quark operators. Our result for
the quark field renormalization constant, converted to the
MS scheme, reads

ZMS
ψ (µ = 2 GeV) = 0.871 ± 0.003 ± 0.020 , (4)

in good agreement with the result obtained in [19] by using
the non-perturbative RI-MOM method.

In Sect. 5 we evaluate the chiral quark condensate by
fitting in coordinate space the quark propagator, extrap-
olated to the chiral limit, to its OPE. A second estimate
is obtained by first using the OPE at finite values of the
quark mass and then extrapolating the result to the chi-
ral limit. Different functional forms are considered in the
fits, and the differences among the results are taken into
account in the estimate of the systematic error. The two
approaches give completely consistent results.

The final result quoted in (2) is presented in Sect. 6,
where we discuss in details the evaluation of the system-
atic error.

Finally, we sketch in the appendix the NLO QCD cal-
culation of the Wilson coefficients entering in (1).

2 OPE of the quark propagator
in coordinate space

The quark propagator can be expressed in terms of two
scalar form factors, Σ1(x) and Σ2(x), which are defined
from

S(x) =
/x

(x2)2
Σ1(x) +

1
x2 Σ2(x). (5)

The leading terms in the OPE of Σ1(x) and Σ2(x) can be
read from (1):

Σ1(x) =
1

2π2 CI(x) + · · · , (6)

Σ2(x) =
1

4π2 Cm(x)m− 1
4Nc

Cψ̄ψ(x) 〈ψ̄ψ〉x2 + · · · ,

where, at variance with (1), the Wilson coefficients
CI(x), Cm(x) and Cψ̄ψ(x) are normalized to unity in the
free theory. Nc is the number of colors and the quark con-
densate is defined as

〈ψ̄ψ〉 ≡ 〈ψ̄αi (0)ψαi (0)〉 , (7)

where a summation over repeated color and spin indices
is understood.

By using the known two-loop results for the quark
field and the quark mass anomalous dimensions in QCD, a
simple one-loop calculation provides the renormalization
group improved expressions for the Wilson coefficients in
(6), at the NLO. The main steps of the calculation are
given in the appendix. We find, in the MS scheme,

ΣMS
1 (x, µ) (8)

=
1

2π2 Wψ(µ, 1/x)
[
1 − 2

αs(1/x)
4π

CF ξ (γE − log 2)
]
,
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ΣMS
2 (x, µ)

= Wψ(µ, 1/x)
[
1 − 2

αs(1/x)
4π

CF ξ (γE − log 2)
]

×
{

1
4π2Wm(µ, 1/x)

×
[
1 +

αs(1/x)
4π

CF (4 − 2(ξ − 3)(γE − log 2))
]

×mMS(µ) (9)

− 1
4Nc

W−1
m (µ, 1/x)

×
[
1 + 2

αs(1/x)
4π

CF (1 − (ξ + 3)(γE − log 2))
]

× 〈ψ̄ψ〉MS(µ)x2
}
.

The terms in square brackets represent the Wilson coef-
ficients at the scale µ = 1/x, whereas WI(µ, 1/x), with
I = ψ,m, are the NLO evolution functions,

WI(µ, 1/x) =
(
αs(1/x)
αs(µ)

) γ0
I

2β0

×
[
1 +

(
β1γ

0
I

2β2
0

− γ1
I

2β0

)
αs(µ) − αs(1/x)

4π

]
. (10)

The coefficients of the beta function and of the quark mass
and quark field anomalous dimensions at the LO and NLO
read

β0 =
11Nc − 2nf

3
, β1 =

34
3
N2
c − 10

3
Ncnf − 2CFnf ,

γ0
m = 6CF , γ1

m = CF

(
97
3
Nc + 3CF − 10

3
nf

)
, (11)

γ0
ψ = −2ξCF ,

γ1
ψ = −4CF

((
25
8

+ ξ +
ξ2

8

)
Nc − 1

2
nf − 3

4
CF

)
,

where CF = (N2
c − 1)/(2Nc), ξ is the gauge parameter

(ξ = 0 in the Landau gauge) and nf is the number of
active flavors (nf = 0 in the quenched approximation).

The result in coordinate space for the Wilson coef-
ficient of the quark condensate given in (9) corresponds
to the one obtained in [20] in momentum space. Equa-
tions (8) and (9) will be used in Sects. 4 and 5 to extract
the quark field renormalization constant and the chiral
quark condensate with NLO accuracy in the MS scheme.

3 Analysis of discretization effects

In this section we present the details of the lattice simu-
lation, illustrate the results obtained for the bare quark
propagator and discuss the free theory correction imple-
mented in order to reduce the lattice artifacts.

We have generated 180 gauge configurations in the
quenched approximation with the non-perturbatively

Table 1. Quark masses in lattice units for the non-
perturbatively O(a)-improved Wilson action at β = 6.45. The
results are taken from [21] (where they are quoted in the RI-
MOM scheme at the scale µ = 3 GeV)

κ 0.1349 0.1351 0.1352 0.1353

amMS
AWI(2 GeV) 0.0305(4) 0.0227(3) 0.0188(2) 0.0149(2)

amMS
VWI(2 GeV) 0.0288(3) 0.0215(2) 0.0178(2) 0.0141(1)

O(a)-improved Wilson action on a volume of 323 × 70 at
β = 6.45. As a value of the inverse lattice spacing we use
a−1 = 3.87(19) GeV, as obtained in [21] from the stud-
ies of the quark-antiquark potential [22] and by using in
input the reference scale a−1(β = 6.0) = 2.0(1) GeV.2
We have computed the quark propagator at four values
of the hopping parameter, κ = 0.1349, 0.1351, 0.1352,
0.1353, corresponding to light quark masses in the range
ms/2 <∼ m <∼ ms. The corresponding values of the renor-
malized quark masses have been obtained in [21] from the
study of both the vector and axial-vector Ward identi-
ties and are given in lattice units, in the MS scheme, in
Table 1. These values have been used in the study of the
OPE of the quark propagator and to perform the chiral
extrapolations of the quantities we are interested in. The
statistical errors quoted in this paper have been evaluated
with the jackknife technique.

We have fixed the Landau gauge on the lattice by min-
imizing the quantity:

θ =
1
V

∑
x

Tr [∆µAµ(x)∆νAν(x) ] , (12)

where V is the lattice volume and ∆µAµ is the discretized
version of the gauge field divergence ∂µAµ. We have re-
quired θ ≤ 5.0 × 10−4 for all the configurations used in
this study.

In order to compute the quark condensate and the
quark field renormalization constant, we have extracted
from the quark propagator in the Landau gauge the bare
form factors Σ1(x) and Σ2(x) defined in (5). The results
are shown in Fig. 1 (top) for κ = 0.1349 as functions of
(x/a)2.

Lorentz invariance requires that, when approaching
the continuum limit, the form factors should become func-
tions of x2 only. At fixed value of the lattice spacing, how-
ever, the plots in Fig. 1 (top) show that points correspond-
ing to the same value of (x/a)2 are significantly spread out.
This is true especially at short distances ((x/a)2 <∼ 10),
where discretization effects are expected to be larger. A
better understanding of these effects can be obtained by
studying the lattice quark propagator in the free theory.
Indeed, in the short distance region which is relevant for
the X-space method the interacting theory is expected
to approach the asymptotic free regime, up to small per-
turbative corrections. One finds that Σ1(x) and Σ2(x),

2 Had we used in the input r0 = 0.5 fm, we would have ob-
tained a−1 � 4.10 GeV.
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Fig. 1. The bare form factors Σ1 (left panels) and Σ2 (right panels). We show, from top to bottom: the form factors in the
interacting theory, as obtained from the lattice simulation at k=0.1349; the form factors computed in the free lattice theory, at
infinite volume and in the chiral limit; the “corrected” form factors defined in (13) and (14)

computed on the lattice in the free theory, present simi-
lar deviations from the expected continuum behavior. The
free theory results, obtained at infinite volume and in the
chiral limit, are shown in Fig. 1 (center), and they can be
compared with the lattice results shown in the top pan-
els. This similarity suggests that one can identify the dis-
cretization patterns in the free case in order to subtract
them in the interacting case of interest [17]. The practi-

cal implementation of this approach passes through the
definition of the “corrected” form factors.

In the case of Σ1(x) we define

Σcorr
1 (x) =

(
Σcont

1, free(x)

Σlat
1, free(x)

)
Σ1(x) , (13)

where Σcont
1, free(x) and Σlat

1, free(x) are the free theory form
factors computed respectively in the continuum and on
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the lattice, at infinite volume and in the chiral limit. For
finite values of the lattice spacing, the difference of the
ratio Σcont

1, free(x)/Σ
lat
1, free(x) from unity is a measure of tree-

level discretization errors. After the correction of (13), we
expect these errors to be reduced from O(a2) to O(αsa

2).
Concerning Σ2(x) one observes that, in the continuum

and in the chiral limit, the form factor vanishes at any
order of perturbation theory. Therefore, in the case of Σ2
we implement the following correction:

Σcorr
2 (x) = Σ2(x) −Σlat

2, free(x), (14)

where Σlat
2, free represents a pure discretization effect. After

(13) and (14) have been implemented, we also average the
results for the form factors Σ1(x) and Σ2(x) obtained at
lattice points which correspond to the same value of x2.

The remarkable effect of the correction on the two form
factors is shown in Fig. 1 (bottom). In the following anal-
ysis, otherwise indicated, we will always use the corrected
form factors defined in (13) and (14).

4 Renormalization of the quark propagator
in the X scheme

In this section, we define the X-space renormalization
scheme [17] for the quark propagator and discuss the
determination of the corresponding renormalization con-
stant.

The quark field renormalization constant ZXψ (µ),
in the Landau gauge X scheme, is determined non-
perturbatively by imposing the condition

ZXψ (µ = 1/x)Σ1(x)
∣∣∣ξ=0
m→0 = Σcont

1, free(x), (15)

where the value of the form factor in the free continuum
theory and in the chiral limit is Σcont

1, free(x) = 1/(2π2). The
limit m → 0 in (15) guarantees a mass-independent def-
inition of the renormalization scheme. It also guarantees
that, when using the O(a)-improved Wilson action, the
renormalization constant computed from (15) is automat-
ically O(a)-improved, without need of further improving
the quark field [19].3

In order to extrapolate the form factor Σ1(x) to the
chiral limit we have assumed a linear dependence on the
quark mass. This dependence describes well the lattice
data as can be seen from Fig. 2, where the linear fit is
shown for three values of x2 in the range of interest. A
quadratic fit has been also performed in order to evaluate
the systematic error involved in the chiral extrapolation.

3 In the definition of the O(a)-improved quark field,

qI(x) = q(x) + a bqmq(x) + a c ′
q( /D +m) q(x) + a cNGI /∂ q(x),

the second term vanishes in the chiral limit, while the third one
produces in the quark propagator a contact term in x = 0. The
contribution to the quark propagator of the last non-gauge-
invariant term has been found to be practically indistinguish-
able from the contact term proportional to c ′

q [16].

0.010 0.015 0.020 0.025 0.030 0.035 0.040

am
AWI

0.053

0.054

0.055

0.056

0.057

0.058

0.059

Σ1(x=15)
Σ1(x=20)
Σ1(x=25)
linear fit

Fig. 2. Quark mass dependence of Σ1(x) at three different
values of x2. The dashed lines represent the result of a linear
fit

By combining the renormalization condition (15) with
the NLO evolution function of Zψ given in (10) and con-
sidering that the LO anomalous dimension of the quark
field vanishes in the Landau gauge, one finds at the NLO

ZXψ (µ) = Wψ(µ, 1/x)ZXψ (1/x) (16)

=

(
1 − γ1

ψ

2β0

αs(µ) − αs(1/x)
4π

)(
Σcont

1, free(x)
Σ1(x)

)
.

We also note that, in the Landau gauge, the equality of
the renormalized form factor Σ1(x) at one loop in the MS
and X schemes implies that the NLO anomalous dimen-
sions γ1

ψ are also equal in the two schemes. In the numer-
ical analysis, αs(1/x) has been evaluated at the NLO in
the MS scheme by using nf = 0 and the quenched esti-
mate Λnf =0

QCD = 0.225(21) GeV (obtained from r0Λ
nf =0
QCD =

0.602(48) [23] and using r0 = 0.525(25) fm).
As already discussed in the introduction, the X-space

non-perturbative renormalization approach relies on the
existence of a window a <∼ x <∼ 1/ΛQCD which permits
matching the lattice results with the perturbative ones
and, at the same time, avoiding the region at very short
distances affected by contact terms and large discretiza-
tion effects. In practice, in the present study, we consider
this condition satisfied in the range 9 <∼ (x/a)2 <∼ 25 (the
upper bound corresponds to x−1 ∼ 1 GeV).

The results for ZXψ (µ = 2 GeV) as obtained from (16)
at different values of x2 are shown in Fig. 3. One observes
that even in the region (x/a)2 = [9, 25] the data show
some spread, at the level of a few percent. This spread
is due to discretization errors which remain after the free
theory correction has been implemented. It represents the
main source of systematic uncertainty in the evaluation of
Zψ. A second source of uncertainty is the fact that one
cannot exclude, even in the fitting region (x/a)2 = [9, 25],
a systematic dependence of the data on x2, which could
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linear fit [9,40]

Z
X

ψ(µ=2 GeV)

Fig. 3. Values of ZXψ (µ = 2 GeV) as obtained from (16) for
different values of (x/a)2. The solid lines indicate the results
obtained from a constant fit in x2 and the estimated systematic
error (see (17)). The dashed vertical lines show the range in
(x/a)2 where the constant fit is performed. The result of a
linear fit in x2 is also shown (dashed line). In the latter case,
the estimate of ZXψ (µ = 2 GeV) is given by the intercept

Table 2. Zψ(µ) in the X-space scheme at µ = 2 GeV as ob-
tained from either a constant or a linear fit in x2. The quoted
errors are statistical only

ZXψ (µ) (x/a)2-range fit

0.871 ± 0.003 [9, 25] constant
0.852 ± 0.003 [9, 40] linear

be due to higher order contributions to the OPE of Σ1(x)
neglected in (6). In order to evaluate this systematics, we
have evaluated Zψ(µ) from both a constant and a linear fit
in (x/a)2, by considering in the latter case larger intervals
in x2 (up to (x/a)2 = 40). The results of the fits are
presented in Table 2.

The other sources of systematic effects, as those deriv-
ing from the determination of the lattice scale, the esti-
mate of ΛQCD, the difference between linear and quadratic
chiral extrapolations and the use of the vector or the axial-
vector definitions of the quark masses in these extrapola-
tions, are found to be negligible. As a final estimate of
ZXψ (µ) we thus quote

ZXψ (2 GeV) = 0.871 ± 0.003 ± 0.020, (17)

where the first error is statistical and the second system-
atic. The central value in (17) is the one obtained from the
constant fit in the shorter distance range (x/a)2 = [9, 25],
where the contribution of higher power corrections is more
suppressed. The few percent error on the value of Zψ intro-
duces an uncertainty in the estimate of the chiral quark

condensate discussed in the next section which is com-
pletely negligible.

The vanishing of the one-loop contribution to the form
factor Σ1(x) in the Landau gauge implies that the quark
field renormalization constant at the NLO is equal in sev-
eral commonly used renormalization schemes. In particu-
lar,

ZXψ (µ) = ZMS
ψ (µ) = ZRI−MOM

ψ (µ) (18)

at the NLO. The result in (17) can be therefore directly
compared to the value ZRI−MOM

ψ (2 GeV) = 0.865 ± 0.003
obtained non-perturbatively in [19] by using the RI-MOM
method. It can be also compared with the prediction
of one-loop boosted perturbation theory ZMS

ψ (2 GeV) �
0.880.

We also quote the value of ZXψ obtained by using the
rough lattice data, without implementing the tree-level
correction of discretization effects: ZXψ (2 GeV) = 0.868 ±
0.003 ± 0.080. The difference in the central value with
respect to (17) is less than 0.5%. As expected, however,
the systematic uncertainty is much larger in the latter
case, due to the significantly larger spread of the points in
the fitting region. In practice, the tree-level correction has
smoothed the overall behavior of the quark propagator at
short distances, allowing the reduction of the systematic
uncertainty by about a factor of 4, but affecting the central
value by only a small amount.

5 Extraction of the quark condensate

One of the advantages of the approach considered in this
paper to evaluate the chiral quark condensate is that
the renormalization procedure is greatly simplified: in the
OPE of the quark propagator, expressed by (1), once the
propagator on the LHS is renormalized by the quark field
renormalization constant, the RHS turns out to be ex-
pressed directly in terms of renormalized quantities. In
particular, the quark condensate, renormalized at a scale
µ, can be extracted directly from the trace of the quark
propagator (i.e. the scalar form factor Σ2) renormalized at
the same scale. Furthermore, once the quark propagator
is improved at O(a), the operator matrix elements which
enter its OPE are automatically improved at the same
order.

In the study of the OPE, the physical quantity which
we are interested in is the quark condensate in the chiral
limit. To reach this limit, we have followed two procedures.
In the first approach, we extrapolate to the chiral limit the
scalar form factor Σ2(x) for each value of x2. The quark
condensate is then evaluated by using the OPE expressed
by (9), which is accurate at the NLO, in the massless case.
In this limit, the quark condensate represents the leading
term of the expansion. In the second approach, which we
consider for a consistency check of the calculation, the
order of the extrapolations is inverted. At finite values
of the quark mass, the OPE of Σ2 at order x2 contains,
besides the quark condensate, a term proportional to m3.
In this case, we first extract the whole O(x2) contribution
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Table 3. Values of the chiral quark condensate in the MS
scheme at the scale µ = 2 GeV as obtained from either the
constant or the linear fit of (20)

〈ψ̄ψ〉MS(µ = 2 GeV)[ MeV 3] (x/a)2-range
Constant fit Linear fit
−(265 ± 5)3 − [9, 25]
−(266 ± 4)3 −(265 ± 7)3 [9, 40]

to the OPE and then extrapolate the result to the chiral
limit. As we will show in the following, the two procedures
yield completely consistent predictions. We now discuss
the two approaches in more detail.

Method I

For each value of x2, the renormalized form factor Σ2(x) is
extrapolated to the chiral limit, both linearly and quadrat-
ically in either the vector or the axial-vector quark masses.
Examples of this chiral extrapolation, for three typical val-
ues of x2, are shown in Fig. 4. For each value of x2 we have
then computed the quantity

QI(x, µ) ≡ − (ΣMS
2 (x, µ))chiral

Cψ̄ψ(x, µ)x2/4Nc
= 〈ψ̄ψ〉MS(µ) + O(x2)

(19)
and performed a fit to the form

QI(x, µ) = 〈ψ̄ψ〉MS(µ) +B x2 . (20)

Both constant (B = 0) and linear fits have been per-
formed, and the results are presented in Table 3; see also
Fig. 5. Since the results of the linear fit are unstable when
the fit is limited to the interval (x/a)2 = [9, 25], we have
considered in this case larger distances, up to (x/a)2 = 40.
In all cases, we find consistent results for the quark con-
densate, as can be seen from Table 3. We also find that
the contribution of the O(x2) term is completely negligi-
ble, and the coefficient B is compatible with zero within
the statistical errors.

As a further check of our results, we have also extracted
the quark condensate directly from the ratio Σ2/Σ1 of the
two form factors. From (6) one finds that, in the chiral
limit, this ratio behaves as

ΣX
2 (x, µ)

ΣX
1 (x, µ)

=
Σ2(x)
Σ1(x)

(21)

= − π2

2Nc

Cψ̄ψ(x, µ)
CI(x, µ)

〈ψ̄ψ〉MS(µ) + O(x2) .

The determination of the quark condensate from (21) by-
passes the evaluation of the quark field renormalization
constant Zψ. This constant cancels in the ratio, since it
enters the renormalization of both the form factors Σ1 and
Σ2. This also implies that the RHS of (21) is independent
of the choice of the renormalization scale µ. We also find
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linear fits

Method I - Chiral Fit

Fig. 4. Quark mass dependence of Σ2(x) at three different
values of x2. The dashed lines represent the result of a linear
fit
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2
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Fig. 5. Values of QI(x, µ = 2 GeV) as a function of (x/a)2. The
solid lines indicate the results obtained from a constant fit in x2

and the estimated systematic error. The dashed vertical lines
show the range in (x/a)2 where the constant fit is performed.
The result of the linear fit in x2 is also shown (dashed line)

that this ratio, when computed by using the non-corrected
form factors, exhibits a more stable plateau as a function
of x2. The results for the quark condensate obtained with
the two approaches are in excellent agreement (within less
than 2%), indicating that the uncertainty connected with
the evaluation of Zψ is actually negligible.
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Fig. 6. Values of ΣX
2 (x, µ = 2 GeV) as a function of (x/a)2 for

two different values of the quark mass. The solid lines represent
the results of the fit to the OPE prediction performed by using
for the renormalized quark masses the values given in Table 1

Method II

In the second approach we study the OPE of Σ2(x) at
finite values of the quark mass, extract the O(x2) contri-
bution to the expansion and extrapolate it to the chiral
limit, in order to get the chiral quark condensate.

The fit of the form factor Σ2 to its OPE is shown
in Fig. 6, for two values of the quark mass. We find that
the mass term contribution to the OPE, which is leading
at very short distances where lattice artifacts are more
severe, is poorly estimated from the fit. For this reason,
we have chosen to fix the renormalized quark mass in (9)
to the values determined in [21] and collected in Table 1.
Therefore, for each value of the quark mass we compute
the quantity

QII(x,m, µ) ≡ −ΣMS
2 (x, µ) − Cm(x, µ)mMS(µ)/4π2

Cψ̄ψ(x, µ)x2/4Nc
.

(22)
Notice that, in the chiral limit, QII(x,m, µ) reduces to
QI(x, µ) defined in (19). The small spread of the re-
sults coming from choosing the vector or the axial-vector
quark masses is included in the systematics. We then fit
QII(x,m, µ) either to a constant or linearly in x2 and ex-
trapolate the result, denoted as QII(m,µ) in Fig. 7, to the
chiral limit, where it reduces to the chiral quark conden-
sate. The quark mass extrapolation is shown in Fig. 7.
Though the points in the plot look very well aligned, a
quadratic fit in the quark mass has been also performed,
in order to evaluate the corresponding systematic uncer-
tainty. We find that the results obtained for the chiral
quark condensate with this second approach are indistin-
guishable, within the statistical errors, from those derived
by using Method I and presented in Table 3.
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Fig. 7. Linear fit of QII(m,µ = 2 GeV) as a function of the
quark mass. The extrapolated value is the chiral quark con-
densate in lattice units

6 Results and discussion

Our final estimate for the chiral quark condensate is ob-
tained from the results given in Table 3 after including the
evaluation of the systematic error. We quote

〈ψ̄ψ〉MS(2GeV) = −(265 ± 5 ± 22 MeV)3 , (23)

where the first error is statistical and the second system-
atic. The latter, which amounts to about 25%, is due to
the following.
(1) The spread of the points in the fitting regions. As dis-
cussed in Sect. 3, this spread is mostly due to discretization
effects which are left after the tree-level O(a)-correction
has been applied to the lattice data. This error, of about
18%, represents the main source of systematic uncertainty,
besides the quenching approximation.
(2) Arbitrariness in the choice of the fitting interval
(within the window a <∼ x <∼ 1/ΛQCD). This yields a 4–5%
uncertainty.
(3) Different functional forms considered in the fits. Per-
forming a quadratic fit instead of a linear one in the quark
mass extrapolations introduces a systematic difference of
about 9%. Including the O(x2) contribution in the fits of
QI and QII to their OPEs gives a 4–5% variation in the
results.
(4) The statistical error associated to the determination of
the lattice spacing. This error introduces an uncertainty
of about 15% in the estimate of the quark condensate. No-
tice that the systematic error associated in the quenched
approximation to the dependence of the lattice spacing on
the physical quantity used to fix the scale is not included.
We consider this error as a part of the systematic quench-
ing effect.
(5) The uncertainty on the quark field renormalization
constant Zψ, used to renormalize the quark propagator.
This effect is completely negligible in the determination
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of the quark condensate, as discussed in Sect. 5.
(6) The difference between the results obtained using ei-
ther the vector or the axial-vector definitions of the quark
masses. The systematics is slightly affected by this effect,
by less than 1%.
(7) The 10% error on the quenched estimate of ΛQCD gives
a completely negligible uncertainty in the determination
of the quark condensate.

The uncertainty coming from finite volume effects can-
not be directly estimated in the present study, since our
results have been obtained at fixed volume. A study of
lattice artifacts performed in [17] has shown that in the
short distance region, which is the one relevant for the
X-space method, finite volume effects on the lattice cor-
relation functions in the free theory are negligible with re-
spect to discretization effects. We expect this result to re-
main valid in the interacting theory as well, though a more
quantitative conclusion on this point would require further
investigations. The main source of uncertainty which is not
evaluated in our estimate of the chiral quark condensate
is the effect of the quenching approximation.

In conclusion, in this exploratory study we have inves-
tigated on the lattice the OPE of the quark propagator
at short euclidean distances and shown the feasibility of
this approach to compute the chiral quark condensate.
The result obtained in this way is in good agreement with
previous determinations of this quantity based on differ-
ent approaches. The strategy investigated in the present
study can be also applied to compute on the lattice the
matrix elements of other local operators which enter the
OPE of correlation functions at the leading orders. It can
be also directly implemented in lattice simulations per-
formed with dynamical quarks.
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Appendix:
NLO calculation of the Wilson coefficients

In this appendix we sketch the NLO QCD calculation of
the Wilson coefficients introduced in (6).

The OPE of the quark propagator in euclidean space
is expressed by

T (ψ(x)ψ̄(0)) =
1

2π2 CI(x)
(/x)

(x2)2
+

1
4π2 Cm(x)

m

x2

− 1
4N

Cψ̄ψ(x) (ψ̄ψ) + . . . , (A.1)

where the dots represent higher powers of x2 and of the
quark mass m. All quantities in (A.1) are renormalized
at a given scale and in a given renormalization scheme.
In the following, we will choose the MS renormalization
scheme.

In order to determine the Wilson coefficients at the
NLO in QCD, we calculate both the left and the right
hand side of (A.1) up to O(αs) by choosing a common set
of external states. The coefficients CI(x) and Cm(x), in
particular, can be determined by taking the vacuum ex-
pectation value of (A.1) in perturbation theory, where the
contribution of the quark condensate is vanishing. Equa-
tion (A.1) then simply reduces to

S(x) =
1

2π2 CI(x)
(/x)

(x2)2
+

1
4π2 Cm(x)

m

x2 , (A.2)

where S(x) is the quark propagator computed in one-loop
perturbation theory. By using dimensional regularization,
with D = 4 − 2ε, one has

S(x) =
∫

dD k
(2π)D

e−ik·xS(k), (A.3)

where

S(k) = Zψ
/k

i k2

[
1 − αs

4π
CF ξ

(
k2

µ2

)−ε(1
ε̂

+ 1
)]

(A.4)

+ Zψ
Z−1
m m

k2

[
1 +

αs

4π
CF

(
k2

µ2

)−ε(3 − ξ

ε̂
+ 4
)]

,

and 1/ε̂ ≡ 1/ε+ log(4π) − γE. From (A.4) one derives the
expressions of the quark field and the quark mass renor-
malization constants in the MS scheme:

Zψ = 1 +
αs

4π
CF

ξ

ε̂
, Zm = 1 +

αs

4π
CF

3
ε̂
. (A.5)

By inserting (A.4) into (A.3) and using

∫
dD k
(2π)D

e−ik·x

(k2)r
=

1
(4π)D/2

Γ (D/2 − r)
Γ (r)

(
x2

4

)r−D/2
(A.6)

we obtain

S(x)

=
1

2π2

[
1 − αs

4π
CF ξ

(
2γE + log(µ2x2/4)

)] (/x)
(x2)2

+
1

4π2

[
1 +

αs

4π
CF (4 − (ξ − 3)

× (
2γE + log(µ2x2/4)

))] m
x2 . (A.7)

From this result, after comparing with (A.2), the Wilson
coefficients CI(x) and Cm(x) can be readily identified:

CI(x) = 1 − αs

4π
CF ξ

[
2γE + log(µ2x2/4)

]
Cm(x) (A.8)

= 1 +
αs

4π
CF

[
4 − (ξ − 3)

(
2γE + log(µ2x2/4)

)]
.

In order to compute the Wilson coefficient of the quark
condensate, Cψ̄ψ(x), we derive a matching equation by
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Fig. 8. Feynman diagram relevant for the calculation of the
Wilson coefficient Cψ̄ψ(x) at O(αs)

inserting both sides of (A.1) in a connected Green function
with two external quark fields at fixed momenta:

〈(ψaα(x)ψ̄bβ(0))ψ̄cγ(p1)ψdδ (p2)〉 (A.9)

= − 1
4N

δαβδ
abCψ̄ψ(x) 〈(ψ̄(0)ψ(0))ψ̄cγ(p1)ψdδ (p2)〉.

By putting

Cψ̄ψ(x) = C0
ψ̄ψ(x) +

αs

4π
C1
ψ̄ψ(x) (A.10)

and summing in (A.9) over Dirac (α,β) and color (a,b)
indices, one immediately obtains the O(1) contribution to
the Wilson coefficient,

C0
ψ̄ψ = 1 . (A.11)

At O(αs), the matching equation can be schematically
written as

〈(ψ̄(0)ψ(x))ψ̄ψ〉1 (A.12)
= C0

ψ̄ψ〈(ψ̄(0)ψ(0))ψ̄ψ〉1 + C1
ψ̄ψ〈(ψ̄(0)ψ(0))ψ̄ψ〉0,

where 〈. . .〉0 and 〈. . .〉1 represent respectively the O(1)
and O(αs) contributions to the Green functions. We now
consider the amputated Green functions and use (A.11)
together with the relation

〈(ψ̄(0)ψ(0))ψ̄ψ〉amp
0 = I , (A.13)

to obtain

C1
ψ̄ψ · I = 〈(ψ̄(0)ψ(x))ψ̄ψ〉amp

1 − 〈(ψ̄(0)ψ(0))ψ̄ψ〉amp
1 .

(A.14)
The Feynman diagram which contributes to (A.14) at
O(αs) is shown in Fig. 8. Since the matching condition
is independent of the choice of the external states, we can
evaluate this diagram by putting directly p1 = p2 = 0. In
addition, by having neglected in (A.1) higher power cor-
rections in the quark mass, we can compute the amputated
Green functions in (A.14) directly in the limit m = 0. We
then find

C1
ψ̄ψ · I

= 16 π2CF µ
2ε
∫

dD k
(2π)D

(
e−ik·x − 1

) [
γµ

1
/k

1
/k
γν
]

× 1
k2

(
δµν − (1 − ξ)

kµkν
k2

)

+
[
(Zψ − 1) − (Zψ̄ψ − 1

)] · I, (A.15)

where Zψ̄ψ = Z−1
m . By evaluating the Feynman integral

with the aid of (A.6), we finally obtain

Cψ̄ψ(x) = 1 +
αs

4π
CF
[
2 − (ξ + 3)

(
2γE + log(µ2x2/4)

)]
.

(A.16)
The complete NLO expressions for the Wilson coefficients
are derived from (A.7) and (A.16) by applying the stan-
dard NLO evolution functions introduced in (10).
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